create project

create project
This commit is contained in:
2019-12-25 09:36:38 +08:00
parent 27ba675818
commit 9951985c6b
22 changed files with 498941 additions and 33 deletions

704
src/network.cpp Executable file
View File

@@ -0,0 +1,704 @@
#include "network.h"
void addbias(struct pBox *pbox, mydataFmt *pbias) {
if (pbox->pdata == NULL) {
cout << "Relu feature is NULL!!" << endl;
return;
}
if (pbias == NULL) {
cout << "the Relu bias is NULL!!" << endl;
return;
}
mydataFmt *op = pbox->pdata;
mydataFmt *pb = pbias;
long dis = pbox->width * pbox->height;
for (int channel = 0; channel < pbox->channel; channel++) {
for (int col = 0; col < dis; col++) {
*op = *op + *pb;
op++;
}
pb++;
}
}
void image2MatrixInit(Mat &image, struct pBox *pbox) {
if ((image.data == NULL) || (image.type() != CV_8UC3)) {
cout << "image's type is wrong!!Please set CV_8UC3" << endl;
return;
}
pbox->channel = image.channels();
pbox->height = image.rows;
pbox->width = image.cols;
pbox->pdata = (mydataFmt *) malloc(pbox->channel * pbox->height * pbox->width * sizeof(mydataFmt));
if (pbox->pdata == NULL)cout << "the image2MatrixInit failed!!" << endl;
memset(pbox->pdata, 0, pbox->channel * pbox->height * pbox->width * sizeof(mydataFmt));
}
void image2Matrix(const Mat &image, const struct pBox *pbox, int num) {
if ((image.data == NULL) || (image.type() != CV_8UC3)) {
cout << "image's type is wrong!!Please set CV_8UC3" << endl;
return;
}
if (pbox->pdata == NULL) {
return;
}
mydataFmt *p = pbox->pdata;
double sqr, stddev_adj;
int size;
mydataFmt mymean, mystddev;
// prewhiten
if (num != 0) {
meanAndDev(image, &mymean, &mystddev);
cout << mymean << "----" << mystddev << endl;
size = image.cols * image.rows * image.channels();
sqr = sqrt(double(size));
if (mystddev >= 1.0 / sqr) {
stddev_adj = mystddev;
} else {
stddev_adj = 1.0 / sqr;
}
}
for (int rowI = 0; rowI < image.rows; rowI++) {
for (int colK = 0; colK < image.cols; colK++) {
if (num == 0) {
*p = (image.at<Vec3b>(rowI, colK)[2] - 127.5) * 0.0078125;
*(p + image.rows * image.cols) = (image.at<Vec3b>(rowI, colK)[1] - 127.5) * 0.0078125;
*(p + 2 * image.rows * image.cols) = (image.at<Vec3b>(rowI, colK)[0] - 127.5) * 0.0078125;
p++;
} else {
// brg2rgb
*(p + 0 * image.rows * image.cols) = (image.at<Vec3b>(rowI, colK)[2] - mymean) / stddev_adj;
*(p + 1 * image.rows * image.cols) = (image.at<Vec3b>(rowI, colK)[1] - mymean) / stddev_adj;
*(p + 2 * image.rows * image.cols) = (image.at<Vec3b>(rowI, colK)[0] - mymean) / stddev_adj;
p++;
}
}
}
}
void meanAndDev(const Mat &image, mydataFmt *p, mydataFmt *q) {
mydataFmt meansum = 0, stdsum = 0;
for (int rowI = 0; rowI < image.rows; rowI++) {
for (int colK = 0; colK < image.cols; colK++) {
meansum += image.at<Vec3b>(rowI, colK)[0] + image.at<Vec3b>(rowI, colK)[1] + image.at<Vec3b>(rowI, colK)[2];
// cout << int(image.at<Vec3b>(rowI, colK)[0]) << endl;
// cout << int(image.at<Vec3b>(rowI, colK)[1]) << endl;
// cout << int(image.at<Vec3b>(rowI, colK)[2]) << endl;
}
}
*p = meansum / (image.cols * image.rows * image.channels());
for (int rowI = 0; rowI < image.rows; rowI++) {
for (int colK = 0; colK < image.cols; colK++) {
stdsum += pow((image.at<Vec3b>(rowI, colK)[0] - *p), 2) +
pow((image.at<Vec3b>(rowI, colK)[1] - *p), 2) +
pow((image.at<Vec3b>(rowI, colK)[2] - *p), 2);
}
}
*q = sqrt(stdsum / (image.cols * image.rows * image.channels()));
}
void featurePadInit(const pBox *pbox, pBox *outpBox, const int pad, const int padw, const int padh) {
if (pad < -1) {
cout << "the data needn't to pad,please check you network!" << endl;
return;
}
outpBox->channel = pbox->channel;
if (pad == -1) {
outpBox->height = pbox->height + 2 * padh;
outpBox->width = pbox->width + 2 * padw;
} else {
outpBox->height = pbox->height + 2 * pad;
outpBox->width = pbox->width + 2 * pad;
}
long RowByteNum = outpBox->width * sizeof(mydataFmt);
outpBox->pdata = (mydataFmt *) malloc(outpBox->channel * outpBox->height * RowByteNum);
if (outpBox->pdata == NULL)cout << "the featurePadInit is failed!!" << endl;
memset(outpBox->pdata, 0, outpBox->channel * outpBox->height * RowByteNum);
}
void featurePad(const pBox *pbox, pBox *outpBox, const int pad, const int padw, const int padh) {
mydataFmt *p = outpBox->pdata;
mydataFmt *pIn = pbox->pdata;
if (pad == -1) {
for (int row = 0; row < outpBox->channel * outpBox->height; row++) {
if ((row % outpBox->height) < padh || (row % outpBox->height > (outpBox->height - padh - 1))) {
p += outpBox->width;
continue;
}
p += padw;
memcpy(p, pIn, pbox->width * sizeof(mydataFmt));
p += pbox->width + padw;
pIn += pbox->width;
}
} else {
for (int row = 0; row < outpBox->channel * outpBox->height; row++) {
if ((row % outpBox->height) < pad || (row % outpBox->height > (outpBox->height - pad - 1))) {
p += outpBox->width;
continue;
}
p += pad;
memcpy(p, pIn, pbox->width * sizeof(mydataFmt));
p += pbox->width + pad;
pIn += pbox->width;
}
}
}
void convolutionInit(const Weight *weight, pBox *pbox, pBox *outpBox) {
outpBox->channel = weight->selfChannel;
// ((imginputh - ckh + 2 * ckpad) / stride) + 1;
if (weight->kernelSize == 0) {
outpBox->width = ((pbox->width - weight->w + 2 * weight->padw) / weight->stride) + 1;
// outpBox->width = (pbox->width - weight->w) / weight->stride + 1;
// outpBox->height = (pbox->height - weight->h) / weight->stride + 1;
outpBox->height = (pbox->height - weight->h + 2 * weight->padh) / weight->stride + 1;
} else {
outpBox->width = ((pbox->width - weight->kernelSize + 2 * weight->pad) / weight->stride) + 1;
outpBox->height = ((pbox->height - weight->kernelSize + 2 * weight->pad) / weight->stride) + 1;
}
// cout << outpBox->pdata << endl;
outpBox->pdata = (mydataFmt *) malloc(outpBox->width * outpBox->height * outpBox->channel * sizeof(mydataFmt));
// cout << outpBox->pdata << endl;
if (outpBox->pdata == NULL)cout << "the convolutionInit is failed!!" << endl;
memset(outpBox->pdata, 0, outpBox->width * outpBox->height * outpBox->channel * sizeof(mydataFmt));
if (weight->pad != 0) {
pBox *padpbox = new pBox;
featurePadInit(pbox, padpbox, weight->pad, weight->padw, weight->padh);
featurePad(pbox, padpbox, weight->pad, weight->padw, weight->padh);
*pbox = *padpbox;
}
}
void convolution(const Weight *weight, const pBox *pbox, pBox *outpBox) {
// if (weight->pad != 0) {
// pBox *padpbox = new pBox;
// featurePadInit(outpBox, padpbox, weight->pad, weight->padw, weight->padh);
// featurePad(outpBox, padpbox, weight->pad, weight->padw, weight->padh);
// *outpBox = *padpbox;
// }
int ckh, ckw, ckd, stride, cknum, ckpad, imginputh, imginputw, imginputd, Nh, Nw;
mydataFmt *ck, *imginput;
// float *output = outpBox->pdata;
float temp;
ck = weight->pdata;
if (weight->kernelSize == 0) {
ckh = weight->h;
ckw = weight->w;
} else {
ckh = weight->kernelSize;
ckw = weight->kernelSize;
}
ckd = weight->lastChannel;
cknum = weight->selfChannel;
ckpad = weight->pad;
stride = weight->stride;
imginput = pbox->pdata;
imginputh = pbox->height;
imginputw = pbox->width;
imginputd = pbox->channel;
Nh = outpBox->height;
Nw = outpBox->width;
// Nh = ((imginputh - ckh + 2 * ckpad) / stride) + 1;
// Nw = ((imginputw - ckw + 2 * ckpad) / stride) + 1;
for (int i = 0; i < cknum; ++i) {
for (int j = 0; j < Nh; j++) {
for (int k = 0; k < Nw; k++) {
temp = 0;
for (int m = 0; m < ckd; ++m) {
for (int n = 0; n < ckh; ++n) {
for (int i1 = 0; i1 < ckw; ++i1) {
temp += imginput[(j * stride + n) * imginputw
+ (k * stride + i1)
+ m * imginputh * imginputw]
* ck[i * ckh * ckw * ckd + m * ckh * ckw + n * ckw + i1];
// cout << "(" << imginput[(j * stride + n) * imginputw
// + (k * stride + i1)
// + m * imginputh * imginputw] << ")x("
// << ck[i * ckh * ckw * ckd + m * ckh * ckw + n * ckw + i1] << ")="
// << imginput[(j * stride + n) * imginputw
// + (k * stride + i1)
// + m * imginputh * imginputw]
// * ck[i * ckh * ckw * ckd + m * ckh * ckw + n * ckw + i1] << endl;
// cout << temp << endl;
}
}
}
//按照顺序存储
outpBox->pdata[i * outpBox->height * outpBox->width + j * outpBox->width + k] = temp;
}
}
}
// cout << "output->pdata:" << (outpBox->pdata[10]) << endl;
}
void maxPoolingInit(const pBox *pbox, pBox *Matrix, int kernelSize, int stride, int flag) {
if (flag == 1) {
Matrix->width = floor((float) (pbox->width - kernelSize) / stride + 1);
Matrix->height = floor((float) (pbox->height - kernelSize) / stride + 1);
} else {
Matrix->width = ceil((float) (pbox->width - kernelSize) / stride + 1);
Matrix->height = ceil((float) (pbox->height - kernelSize) / stride + 1);
}
Matrix->channel = pbox->channel;
Matrix->pdata = (mydataFmt *) malloc(Matrix->channel * Matrix->width * Matrix->height * sizeof(mydataFmt));
if (Matrix->pdata == NULL)cout << "the maxPoolingI nit is failed!!" << endl;
memset(Matrix->pdata, 0, Matrix->channel * Matrix->width * Matrix->height * sizeof(mydataFmt));
}
void maxPooling(const pBox *pbox, pBox *Matrix, int kernelSize, int stride) {
if (pbox->pdata == NULL) {
cout << "the feature2Matrix pbox is NULL!!" << endl;
return;
}
mydataFmt *p = Matrix->pdata;
mydataFmt *pIn;
mydataFmt *ptemp;
mydataFmt maxNum = 0;
if ((pbox->width - kernelSize) % stride == 0 && (pbox->height - kernelSize) % stride == 0) {
for (int row = 0; row < Matrix->height; row++) {
for (int col = 0; col < Matrix->width; col++) {
pIn = pbox->pdata + row * stride * pbox->width + col * stride;
for (int channel = 0; channel < pbox->channel; channel++) {
ptemp = pIn + channel * pbox->height * pbox->width;
maxNum = *ptemp;
for (int kernelRow = 0; kernelRow < kernelSize; kernelRow++) {
for (int i = 0; i < kernelSize; i++) {
if (maxNum < *(ptemp + i + kernelRow * pbox->width))
maxNum = *(ptemp + i + kernelRow * pbox->width);
}
}
*(p + channel * Matrix->height * Matrix->width) = maxNum;
}
p++;
}
}
} else {
int diffh = 0, diffw = 0;
for (int channel = 0; channel < pbox->channel; channel++) {
pIn = pbox->pdata + channel * pbox->height * pbox->width;
for (int row = 0; row < Matrix->height; row++) {
for (int col = 0; col < Matrix->width; col++) {
ptemp = pIn + row * stride * pbox->width + col * stride;
maxNum = *ptemp;
diffh = row * stride - pbox->height + 1;
diffw = col * stride - pbox->width + 1;
for (int kernelRow = 0; kernelRow < kernelSize; kernelRow++) {
if ((kernelRow + diffh) > 0)break;
for (int i = 0; i < kernelSize; i++) {
if ((i + diffw) > 0)break;
if (maxNum < *(ptemp + i + kernelRow * pbox->width))
maxNum = *(ptemp + i + kernelRow * pbox->width);
}
}
*p++ = maxNum;
}
}
}
}
}
void avePoolingInit(const pBox *pbox, pBox *Matrix, int kernelSize, int stride) {
Matrix->width = ceil((float) (pbox->width - kernelSize) / stride + 1);
Matrix->height = ceil((float) (pbox->height - kernelSize) / stride + 1);
Matrix->channel = pbox->channel;
Matrix->pdata = (mydataFmt *) malloc(Matrix->channel * Matrix->width * Matrix->height * sizeof(mydataFmt));
if (Matrix->pdata == NULL)cout << "the maxPoolingInit is failed!!" << endl;
memset(Matrix->pdata, 0, Matrix->channel * Matrix->width * Matrix->height * sizeof(mydataFmt));
}
void avePooling(const pBox *pbox, pBox *Matrix, int kernelSize, int stride) {
if (pbox->pdata == NULL) {
cout << "the feature2Matrix pbox is NULL!!" << endl;
return;
}
mydataFmt *p = Matrix->pdata;
mydataFmt *pIn;
mydataFmt *ptemp;
mydataFmt sumNum = 0;
if ((pbox->width - kernelSize) % stride == 0 && (pbox->height - kernelSize) % stride == 0) {
for (int row = 0; row < Matrix->height; row++) {
for (int col = 0; col < Matrix->width; col++) {
pIn = pbox->pdata + row * stride * pbox->width + col * stride;
for (int channel = 0; channel < pbox->channel; channel++) {
ptemp = pIn + channel * pbox->height * pbox->width;
sumNum = 0;
for (int kernelRow = 0; kernelRow < kernelSize; kernelRow++) {
for (int i = 0; i < kernelSize; i++) {
sumNum += *(ptemp + i + kernelRow * pbox->width);
}
}
*(p + channel * Matrix->height * Matrix->width) = sumNum / (kernelSize * kernelSize);
}
p++;
}
}
}
}
void prelu(struct pBox *pbox, mydataFmt *pbias, mydataFmt *prelu_gmma) {
if (pbox->pdata == NULL) {
cout << "the pRelu feature is NULL!!" << endl;
return;
}
if (pbias == NULL) {
cout << "the pRelu bias is NULL!!" << endl;
return;
}
mydataFmt *op = pbox->pdata;
mydataFmt *pb = pbias;
mydataFmt *pg = prelu_gmma;
long dis = pbox->width * pbox->height;
for (int channel = 0; channel < pbox->channel; channel++) {
for (int col = 0; col < dis; col++) {
*op = *op + *pb;
*op = (*op > 0) ? (*op) : ((*op) * (*pg));
op++;
}
pb++;
pg++;
}
}
void relu(struct pBox *pbox, mydataFmt *pbias) {
if (pbox->pdata == NULL) {
cout << "the Relu feature is NULL!!" << endl;
return;
}
if (pbias == NULL) {
cout << "the Relu bias is NULL!!" << endl;
return;
}
mydataFmt *op = pbox->pdata;
mydataFmt *pb = pbias;
long dis = pbox->width * pbox->height;
for (int channel = 0; channel < pbox->channel; channel++) {
for (int col = 0; col < dis; col++) {
*op = *op + *pb;
*op = (*op > 0) ? (*op) : ((*op) * 0);
op++;
}
pb++;
}
}
void fullconnectInit(const Weight *weight, pBox *outpBox) {
outpBox->channel = weight->selfChannel;
outpBox->width = 1;
outpBox->height = 1;
outpBox->pdata = (mydataFmt *) malloc(weight->selfChannel * sizeof(mydataFmt));
if (outpBox->pdata == NULL)cout << "the fullconnectInit is failed!!" << endl;
memset(outpBox->pdata, 0, weight->selfChannel * sizeof(mydataFmt));
}
void fullconnect(const Weight *weight, const pBox *pbox, pBox *outpBox) {
if (pbox->pdata == NULL) {
cout << "the fc feature is NULL!!" << endl;
return;
}
if (weight->pdata == NULL) {
cout << "the fc weight is NULL!!" << endl;
return;
}
memset(outpBox->pdata, 0, weight->selfChannel * sizeof(mydataFmt));
//Y←αAX + βY β must be 0(zero)
// row no trans A's row A'col
//cblas_sgemv(CblasRowMajor, CblasNoTrans, weight->selfChannel, weight->lastChannel, 1, weight->pdata, weight->lastChannel, pbox->pdata, 1, 0, outpBox->pdata, 1);
vectorXmatrix(pbox->pdata, weight->pdata,
pbox->width * pbox->height * pbox->channel,
weight->lastChannel, weight->selfChannel,
outpBox->pdata);
}
void vectorXmatrix(mydataFmt *matrix, mydataFmt *v, int size, int v_w, int v_h, mydataFmt *p) {
for (int i = 0; i < v_h; i++) {
p[i] = 0;
for (int j = 0; j < v_w; j++) {
p[i] += matrix[j] * v[i * v_w + j];
// cout << p[i] << endl;
}
// cout << p[i] << endl;
// p[i] = -0.0735729;
// cout << "...." << endl;
// break;
}
// cout << "...." << endl;
}
void readData(string filename, long dataNumber[], mydataFmt *pTeam[], int length) {
ifstream in(filename.data());
string line;
long temp = dataNumber[0];
if (in) {
int i = 0;
int count = 0;
int pos = 0;
while (getline(in, line)) {
try {
if (i < temp) {
line.erase(0, 1);
pos = line.find(']');
line.erase(pos, 1);
pos = line.find('\r');
if (pos != -1) {
line.erase(pos, 1);
}
if (dataNumber[count] != 0) {
*(pTeam[count])++ = atof(line.data());
}
} else {
count++;
if ((length != 0) && (count == length))
break;
temp += dataNumber[count];
line.erase(0, 1);
pos = line.find(']');
line.erase(pos, 1);
pos = line.find('\r');
if (pos != -1) {
line.erase(pos, 1);
}
if (dataNumber[count] != 0) {
*(pTeam[count])++ = atof(line.data());
}
}
i++;
}
catch (exception &e) {
cout << " error " << i << endl;
return;
}
}
} else {
cout << "no such file" << filename << endl;
}
}
// w sc lc ks s p kw kh
long initConvAndFc(struct Weight *weight, int schannel, int lchannel, int kersize,
int stride, int pad, int w, int h, int padw, int padh) {
weight->selfChannel = schannel;
weight->lastChannel = lchannel;
weight->kernelSize = kersize;
// if (kersize == 0) {
weight->h = h;
weight->w = w;
// }
// if (pad == -1) {
weight->padh = padh;
weight->padw = padw;
// }
weight->stride = stride;
weight->pad = pad;
weight->pbias = (mydataFmt *) malloc(schannel * sizeof(mydataFmt));
if (weight->pbias == NULL)cout << "Memory request not successful!!!";
memset(weight->pbias, 0, schannel * sizeof(mydataFmt));
long byteLenght;
if (kersize == 0) {
byteLenght = weight->selfChannel * weight->lastChannel * weight->h * weight->w;
} else {
byteLenght = weight->selfChannel * weight->lastChannel * weight->kernelSize * weight->kernelSize;
}
weight->pdata = (mydataFmt *) malloc(byteLenght * sizeof(mydataFmt));
if (weight->pdata == NULL)cout << "Memory request not successful!!!";
memset(weight->pdata, 0, byteLenght * sizeof(mydataFmt));
return byteLenght;
}
void initpRelu(struct pRelu *prelu, int width) {
prelu->width = width;
prelu->pdata = (mydataFmt *) malloc(width * sizeof(mydataFmt));
if (prelu->pdata == NULL)cout << "prelu apply for memory failed!!!!";
memset(prelu->pdata, 0, width * sizeof(mydataFmt));
}
void softmax(const struct pBox *pbox) {
if (pbox->pdata == NULL) {
cout << "the softmax's pdata is NULL , Please check !" << endl;
return;
}
mydataFmt *p2D = pbox->pdata;
mydataFmt *p3D = NULL;
long mapSize = pbox->width * pbox->height;
mydataFmt eleSum = 0;
for (int row = 0; row < pbox->height; row++) {
for (int col = 0; col < pbox->width; col++) {
eleSum = 0;
for (int channel = 0; channel < pbox->channel; channel++) {
p3D = p2D + channel * mapSize;
*p3D = exp(*p3D);
eleSum += *p3D;
}
for (int channel = 0; channel < pbox->channel; channel++) {
p3D = p2D + channel * mapSize;
*p3D = (*p3D) / eleSum;
}
p2D++;
}
}
}
bool cmpScore(struct orderScore lsh, struct orderScore rsh) {
if (lsh.score < rsh.score)
return true;
else
return false;
}
void nms(vector<struct Bbox> &boundingBox_, vector<struct orderScore> &bboxScore_, const mydataFmt overlap_threshold,
string modelname) {
if (boundingBox_.empty()) {
return;
}
std::vector<int> heros;
//sort the score
sort(bboxScore_.begin(), bboxScore_.end(), cmpScore);
int order = 0;
float IOU = 0;
float maxX = 0;
float maxY = 0;
float minX = 0;
float minY = 0;
while (bboxScore_.size() > 0) {
order = bboxScore_.back().oriOrder;
bboxScore_.pop_back();
if (order < 0)continue;
heros.push_back(order);
boundingBox_.at(order).exist = false;//delete it
for (int num = 0; num < boundingBox_.size(); num++) {
if (boundingBox_.at(num).exist) {
//the iou
maxX = (boundingBox_.at(num).x1 > boundingBox_.at(order).x1) ? boundingBox_.at(num).x1
: boundingBox_.at(order).x1;
maxY = (boundingBox_.at(num).y1 > boundingBox_.at(order).y1) ? boundingBox_.at(num).y1
: boundingBox_.at(order).y1;
minX = (boundingBox_.at(num).x2 < boundingBox_.at(order).x2) ? boundingBox_.at(num).x2
: boundingBox_.at(order).x2;
minY = (boundingBox_.at(num).y2 < boundingBox_.at(order).y2) ? boundingBox_.at(num).y2
: boundingBox_.at(order).y2;
//maxX1 and maxY1 reuse
maxX = ((minX - maxX + 1) > 0) ? (minX - maxX + 1) : 0;
maxY = ((minY - maxY + 1) > 0) ? (minY - maxY + 1) : 0;
//IOU reuse for the area of two bbox
IOU = maxX * maxY;
if (!modelname.compare("Union"))
IOU = IOU / (boundingBox_.at(num).area + boundingBox_.at(order).area - IOU);
else if (!modelname.compare("Min")) {
IOU = IOU /
((boundingBox_.at(num).area < boundingBox_.at(order).area) ? boundingBox_.at(num).area
: boundingBox_.at(
order).area);
}
if (IOU > overlap_threshold) {
boundingBox_.at(num).exist = false;
for (vector<orderScore>::iterator it = bboxScore_.begin(); it != bboxScore_.end(); it++) {
if ((*it).oriOrder == num) {
(*it).oriOrder = -1;
break;
}
}
}
}
}
}
for (int i = 0; i < heros.size(); i++)
boundingBox_.at(heros.at(i)).exist = true;
}
void refineAndSquareBbox(vector<struct Bbox> &vecBbox, const int &height, const int &width) {
if (vecBbox.empty()) {
cout << "Bbox is empty!!" << endl;
return;
}
float bbw = 0, bbh = 0, maxSide = 0;
float h = 0, w = 0;
float x1 = 0, y1 = 0, x2 = 0, y2 = 0;
for (vector<struct Bbox>::iterator it = vecBbox.begin(); it != vecBbox.end(); it++) {
if ((*it).exist) {
bbh = (*it).x2 - (*it).x1 + 1;
bbw = (*it).y2 - (*it).y1 + 1;
x1 = (*it).x1 + (*it).regreCoord[1] * bbh;
y1 = (*it).y1 + (*it).regreCoord[0] * bbw;
x2 = (*it).x2 + (*it).regreCoord[3] * bbh;
y2 = (*it).y2 + (*it).regreCoord[2] * bbw;
h = x2 - x1 + 1;
w = y2 - y1 + 1;
maxSide = (h > w) ? h : w;
x1 = x1 + h * 0.5 - maxSide * 0.5;
y1 = y1 + w * 0.5 - maxSide * 0.5;
(*it).x2 = round(x1 + maxSide - 1);
(*it).y2 = round(y1 + maxSide - 1);
(*it).x1 = round(x1);
(*it).y1 = round(y1);
//boundary check
if ((*it).x1 < 0)(*it).x1 = 0;
if ((*it).y1 < 0)(*it).y1 = 0;
if ((*it).x2 > height)(*it).x2 = height - 1;
if ((*it).y2 > width)(*it).y2 = width - 1;
it->area = (it->x2 - it->x1) * (it->y2 - it->y1);
}
}
}
void initBN(struct BN *var, struct BN *mean, struct BN *beta, int width) {
var->width = width;
var->pdata = (mydataFmt *) malloc(width * sizeof(mydataFmt));
if (var->pdata == NULL)cout << "prelu apply for memory failed!!!!";
memset(var->pdata, 0, width * sizeof(mydataFmt));
mean->width = width;
mean->pdata = (mydataFmt *) malloc(width * sizeof(mydataFmt));
if (mean->pdata == NULL)cout << "prelu apply for memory failed!!!!";
memset(mean->pdata, 0, width * sizeof(mydataFmt));
beta->width = width;
beta->pdata = (mydataFmt *) malloc(width * sizeof(mydataFmt));
if (beta->pdata == NULL)cout << "prelu apply for memory failed!!!!";
memset(beta->pdata, 0, width * sizeof(mydataFmt));
}
void BatchNorm(struct pBox *pbox, struct BN *var, struct BN *mean, struct BN *beta) {
if (pbox->pdata == NULL) {
cout << "Relu feature is NULL!!" << endl;
return;
}
if ((var->pdata == NULL) || (mean->pdata == NULL) || (beta->pdata == NULL)) {
cout << "the BatchNorm bias is NULL!!" << endl;
return;
}
mydataFmt *pp = pbox->pdata;
mydataFmt *vp = var->pdata;
mydataFmt *mp = mean->pdata;
mydataFmt *bp = beta->pdata;
double scale = 0.995;
double bias = 0.0010000000474974513;
long dis = pbox->width * pbox->height;
for (int channel = 0; channel < pbox->channel; channel++) {
for (int col = 0; col < dis; col++) {
// *pp = *pp + *vp;
// cout << ((*pp) / (sqrt(*vp + bias))) << endl;
// cout << ((*pp) * (*mp) / (sqrt(*vp + bias))) << endl;
// if (*pp == 0) {
// cout << *vp << "===" << *mp << "===" << *bp << endl;
// }
*pp = ((*pp) * (scale) / (sqrt(*vp + bias))) + ((*bp) - (((*pp) * (*mp) * (scale)) / (sqrt(*vp + bias))));
// cout << *pp << endl;
pp++;
}
vp++;
mp++;
bp++;
}
}