Files
MTCNN-FaceNet-light/src/mtcnn.cpp
ChrisKong 11e7f54983 整理代码结构
整理代码结构
2019-12-25 15:25:46 +08:00

618 lines
23 KiB
C++
Executable File

#include "mtcnn.h"
Pnet::Pnet() {
Pthreshold = 0.6f;
nms_threshold = 0.5;
firstFlag = true;
this->rgb = new pBox;
this->conv1 = new pBox;
this->maxPooling1 = new pBox;
this->conv2 = new pBox;
this->conv3 = new pBox;
this->score_ = new pBox;
this->location_ = new pBox;
this->conv1_wb = new Weight;
this->prelu_gmma1 = new pRelu;
this->conv2_wb = new Weight;
this->prelu_gmma2 = new pRelu;
this->conv3_wb = new Weight;
this->prelu_gmma3 = new pRelu;
this->conv4c1_wb = new Weight;
this->conv4c2_wb = new Weight;
// w sc lc ks s p
long conv1 = initConvAndFc(this->conv1_wb, 10, 3, 3, 1, 0);
initpRelu(this->prelu_gmma1, 10);
long conv2 = initConvAndFc(this->conv2_wb, 16, 10, 3, 1, 0);
initpRelu(this->prelu_gmma2, 16);
long conv3 = initConvAndFc(this->conv3_wb, 32, 16, 3, 1, 0);
initpRelu(this->prelu_gmma3, 32);
long conv4c1 = initConvAndFc(this->conv4c1_wb, 2, 32, 1, 1, 0);
long conv4c2 = initConvAndFc(this->conv4c2_wb, 4, 32, 1, 1, 0);
long dataNumber[13] = {conv1, 10, 10, conv2, 16, 16, conv3, 32, 32, conv4c1, 2, conv4c2, 4};
mydataFmt *pointTeam[13] = {this->conv1_wb->pdata, this->conv1_wb->pbias, this->prelu_gmma1->pdata, \
this->conv2_wb->pdata, this->conv2_wb->pbias, this->prelu_gmma2->pdata, \
this->conv3_wb->pdata, this->conv3_wb->pbias, this->prelu_gmma3->pdata, \
this->conv4c1_wb->pdata, this->conv4c1_wb->pbias, \
this->conv4c2_wb->pdata, this->conv4c2_wb->pbias};
string filename = "../Pnet.txt";
readData(filename, dataNumber, pointTeam, 13);
}
Pnet::~Pnet() {
freepBox(this->rgb);
freepBox(this->conv1);
freepBox(this->maxPooling1);
freepBox(this->conv2);
freepBox(this->conv3);
freepBox(this->score_);
freepBox(this->location_);
freeWeight(this->conv1_wb);
freepRelu(this->prelu_gmma1);
freeWeight(this->conv2_wb);
freepRelu(this->prelu_gmma2);
freeWeight(this->conv3_wb);
freepRelu(this->prelu_gmma3);
freeWeight(this->conv4c1_wb);
freeWeight(this->conv4c2_wb);
}
void Pnet::run(Mat &image, mydataFmt scale) {
if (firstFlag) {
image2MatrixInit(image, this->rgb);
convolutionInit(this->conv1_wb, this->rgb, this->conv1);
maxPoolingInit(this->conv1, this->maxPooling1, 2, 2);
convolutionInit(this->conv2_wb, this->maxPooling1, this->conv2);
convolutionInit(this->conv3_wb, this->conv2, this->conv3);
convolutionInit(this->conv4c1_wb, this->conv3, this->score_);
convolutionInit(this->conv4c2_wb, this->conv3, this->location_);
firstFlag = false;
}
image2Matrix(image, this->rgb);
convolution(this->conv1_wb, this->rgb, this->conv1);
prelu(this->conv1, this->conv1_wb->pbias, this->prelu_gmma1->pdata);
//Pooling layer
maxPooling(this->conv1, this->maxPooling1, 2, 2);
convolution(this->conv2_wb, this->maxPooling1, this->conv2);
prelu(this->conv2, this->conv2_wb->pbias, this->prelu_gmma2->pdata);
//conv3
convolution(this->conv3_wb, this->conv2, this->conv3);
prelu(this->conv3, this->conv3_wb->pbias, this->prelu_gmma3->pdata);
//conv4c1 score
convolution(this->conv4c1_wb, this->conv3, this->score_);
addbias(this->score_, this->conv4c1_wb->pbias);
softmax(this->score_);
// pBoxShow(this->score_);
//conv4c2 location
convolution(this->conv4c2_wb, this->conv3, this->location_);
addbias(this->location_, this->conv4c2_wb->pbias);
//softmax layer
generateBbox(this->score_, this->location_, scale);
}
void Pnet::generateBbox(const struct pBox *score, const struct pBox *location, mydataFmt scale) {
//for pooling
int stride = 2;
int cellsize = 12;
int count = 0;
//score p
mydataFmt *p = score->pdata + score->width * score->height;
mydataFmt *plocal = location->pdata;
struct Bbox bbox;
struct orderScore order;
for (int row = 0; row < score->height; row++) {
for (int col = 0; col < score->width; col++) {
if (*p > Pthreshold) {
bbox.score = *p;
order.score = *p;
order.oriOrder = count;
/*
bbox.x1 = round((stride*col + 1) / scale);
bbox.y1 = round((stride*row + 1) / scale);
bbox.x2 = round((stride*col + 1 + cellsize) / scale);
bbox.y2 = round((stride*row + 1 + cellsize) / scale);
*/
bbox.x1 = int(round((stride * row + 1) / scale));
bbox.y1 = int(round((stride * col + 1) / scale));
bbox.x2 = int(round((stride * row + 1 + cellsize) / scale));
bbox.y2 = int(round((stride * col + 1 + cellsize) / scale));
bbox.exist = true;
bbox.area = float((bbox.x2 - bbox.x1) * (bbox.y2 - bbox.y1));
for (int channel = 0; channel < 4; channel++)
bbox.regreCoord[channel] = *(plocal + channel * location->width * location->height);
boundingBox_.push_back(bbox);
bboxScore_.push_back(order);
count++;
}
p++;
plocal++;
}
}
}
Rnet::Rnet() {
Rthreshold = 0.7f;
this->rgb = new pBox;
this->conv1_out = new pBox;
this->pooling1_out = new pBox;
this->conv2_out = new pBox;
this->pooling2_out = new pBox;
this->conv3_out = new pBox;
this->fc4_out = new pBox;
this->score_ = new pBox;
this->location_ = new pBox;
this->conv1_wb = new Weight;
this->prelu_gmma1 = new pRelu;
this->conv2_wb = new Weight;
this->prelu_gmma2 = new pRelu;
this->conv3_wb = new Weight;
this->prelu_gmma3 = new pRelu;
this->fc4_wb = new Weight;
this->prelu_gmma4 = new pRelu;
this->score_wb = new Weight;
this->location_wb = new Weight;
// // w sc lc ks s p
long conv1 = initConvAndFc(this->conv1_wb, 28, 3, 3, 1, 0);
initpRelu(this->prelu_gmma1, 28);
long conv2 = initConvAndFc(this->conv2_wb, 48, 28, 3, 1, 0);
initpRelu(this->prelu_gmma2, 48);
long conv3 = initConvAndFc(this->conv3_wb, 64, 48, 2, 1, 0);
initpRelu(this->prelu_gmma3, 64);
long fc4 = initConvAndFc(this->fc4_wb, 128, 576, 1, 1, 0);
initpRelu(this->prelu_gmma4, 128);
long score = initConvAndFc(this->score_wb, 2, 128, 1, 1, 0);
long location = initConvAndFc(this->location_wb, 4, 128, 1, 1, 0);
long dataNumber[16] = {conv1, 28, 28, conv2, 48, 48, conv3, 64, 64, fc4, 128, 128, score, 2, location, 4};
mydataFmt *pointTeam[16] = {this->conv1_wb->pdata, this->conv1_wb->pbias, this->prelu_gmma1->pdata, \
this->conv2_wb->pdata, this->conv2_wb->pbias, this->prelu_gmma2->pdata, \
this->conv3_wb->pdata, this->conv3_wb->pbias, this->prelu_gmma3->pdata, \
this->fc4_wb->pdata, this->fc4_wb->pbias, this->prelu_gmma4->pdata, \
this->score_wb->pdata, this->score_wb->pbias, \
this->location_wb->pdata, this->location_wb->pbias};
string filename = "../Rnet.txt";
readData(filename, dataNumber, pointTeam, 16);
//Init the network
RnetImage2MatrixInit(rgb);
convolutionInit(this->conv1_wb, this->rgb, this->conv1_out);
maxPoolingInit(this->conv1_out, this->pooling1_out, 3, 2);
convolutionInit(this->conv2_wb, this->pooling1_out, this->conv2_out);
maxPoolingInit(this->conv2_out, this->pooling2_out, 3, 2);
convolutionInit(this->conv3_wb, this->pooling2_out, this->conv3_out);
fullconnectInit(this->fc4_wb, this->fc4_out);
fullconnectInit(this->score_wb, this->score_);
fullconnectInit(this->location_wb, this->location_);
}
Rnet::~Rnet() {
freepBox(this->rgb);
freepBox(this->conv1_out);
freepBox(this->pooling1_out);
freepBox(this->conv2_out);
freepBox(this->pooling2_out);
freepBox(this->conv3_out);
freepBox(this->fc4_out);
freepBox(this->score_);
freepBox(this->location_);
freeWeight(this->conv1_wb);
freepRelu(this->prelu_gmma1);
freeWeight(this->conv2_wb);
freepRelu(this->prelu_gmma2);
freeWeight(this->conv3_wb);
freepRelu(this->prelu_gmma3);
freeWeight(this->fc4_wb);
freepRelu(this->prelu_gmma4);
freeWeight(this->score_wb);
freeWeight(this->location_wb);
}
void Rnet::RnetImage2MatrixInit(struct pBox *pbox) {
pbox->channel = 3;
pbox->height = 24;
pbox->width = 24;
pbox->pdata = (mydataFmt *) malloc(pbox->channel * pbox->height * pbox->width * sizeof(mydataFmt));
if (pbox->pdata == NULL)cout << "the image2MatrixInit is failed!!" << endl;
memset(pbox->pdata, 0, pbox->channel * pbox->height * pbox->width * sizeof(mydataFmt));
}
void Rnet::run(Mat &image) {
image2Matrix(image, this->rgb);
convolution(this->conv1_wb, this->rgb, this->conv1_out);
prelu(this->conv1_out, this->conv1_wb->pbias, this->prelu_gmma1->pdata);
maxPooling(this->conv1_out, this->pooling1_out, 3, 2);
convolution(this->conv2_wb, this->pooling1_out, this->conv2_out);
prelu(this->conv2_out, this->conv2_wb->pbias, this->prelu_gmma2->pdata);
maxPooling(this->conv2_out, this->pooling2_out, 3, 2);
//conv3
convolution(this->conv3_wb, this->pooling2_out, this->conv3_out);
prelu(this->conv3_out, this->conv3_wb->pbias, this->prelu_gmma3->pdata);
//flatten
fullconnect(this->fc4_wb, this->conv3_out, this->fc4_out);
prelu(this->fc4_out, this->fc4_wb->pbias, this->prelu_gmma4->pdata);
//conv51 score
fullconnect(this->score_wb, this->fc4_out, this->score_);
addbias(this->score_, this->score_wb->pbias);
softmax(this->score_);
//conv5_2 location
fullconnect(this->location_wb, this->fc4_out, this->location_);
addbias(this->location_, this->location_wb->pbias);
// pBoxShow(location_);
}
Onet::Onet() {
Othreshold = 0.7f;
this->rgb = new pBox;
this->conv1_out = new pBox;
this->pooling1_out = new pBox;
this->conv2_out = new pBox;
this->pooling2_out = new pBox;
this->conv3_out = new pBox;
this->pooling3_out = new pBox;
this->conv4_out = new pBox;
this->fc5_out = new pBox;
this->score_ = new pBox;
this->location_ = new pBox;
this->keyPoint_ = new pBox;
this->conv1_wb = new Weight;
this->prelu_gmma1 = new pRelu;
this->conv2_wb = new Weight;
this->prelu_gmma2 = new pRelu;
this->conv3_wb = new Weight;
this->prelu_gmma3 = new pRelu;
this->conv4_wb = new Weight;
this->prelu_gmma4 = new pRelu;
this->fc5_wb = new Weight;
this->prelu_gmma5 = new pRelu;
this->score_wb = new Weight;
this->location_wb = new Weight;
this->keyPoint_wb = new Weight;
// // w sc lc ks s p
long conv1 = initConvAndFc(this->conv1_wb, 32, 3, 3, 1, 0);
initpRelu(this->prelu_gmma1, 32);
long conv2 = initConvAndFc(this->conv2_wb, 64, 32, 3, 1, 0);
initpRelu(this->prelu_gmma2, 64);
long conv3 = initConvAndFc(this->conv3_wb, 64, 64, 3, 1, 0);
initpRelu(this->prelu_gmma3, 64);
long conv4 = initConvAndFc(this->conv4_wb, 128, 64, 2, 1, 0);
initpRelu(this->prelu_gmma4, 128);
long fc5 = initConvAndFc(this->fc5_wb, 256, 1152, 1, 1, 0);
initpRelu(this->prelu_gmma5, 256);
long score = initConvAndFc(this->score_wb, 2, 256, 1, 1, 0);
long location = initConvAndFc(this->location_wb, 4, 256, 1, 1, 0);
long keyPoint = initConvAndFc(this->keyPoint_wb, 10, 256, 1, 1, 0);
long dataNumber[21] = {conv1, 32, 32, conv2, 64, 64, conv3, 64, 64, conv4, 128, 128, fc5, 256, 256, score, 2,
location, 4, keyPoint, 10};
mydataFmt *pointTeam[21] = {this->conv1_wb->pdata, this->conv1_wb->pbias, this->prelu_gmma1->pdata, \
this->conv2_wb->pdata, this->conv2_wb->pbias, this->prelu_gmma2->pdata, \
this->conv3_wb->pdata, this->conv3_wb->pbias, this->prelu_gmma3->pdata, \
this->conv4_wb->pdata, this->conv4_wb->pbias, this->prelu_gmma4->pdata, \
this->fc5_wb->pdata, this->fc5_wb->pbias, this->prelu_gmma5->pdata, \
this->score_wb->pdata, this->score_wb->pbias, \
this->location_wb->pdata, this->location_wb->pbias, \
this->keyPoint_wb->pdata, this->keyPoint_wb->pbias};
string filename = "../Onet.txt";
readData(filename, dataNumber, pointTeam, 21);
//Init the network
OnetImage2MatrixInit(rgb);
convolutionInit(this->conv1_wb, this->rgb, this->conv1_out);
maxPoolingInit(this->conv1_out, this->pooling1_out, 3, 2);
convolutionInit(this->conv2_wb, this->pooling1_out, this->conv2_out);
maxPoolingInit(this->conv2_out, this->pooling2_out, 3, 2);
convolutionInit(this->conv3_wb, this->pooling2_out, this->conv3_out);
maxPoolingInit(this->conv3_out, this->pooling3_out, 2, 2);
convolutionInit(this->conv4_wb, this->pooling3_out, this->conv4_out);
fullconnectInit(this->fc5_wb, this->fc5_out);
fullconnectInit(this->score_wb, this->score_);
fullconnectInit(this->location_wb, this->location_);
fullconnectInit(this->keyPoint_wb, this->keyPoint_);
}
Onet::~Onet() {
freepBox(this->rgb);
freepBox(this->conv1_out);
freepBox(this->pooling1_out);
freepBox(this->conv2_out);
freepBox(this->pooling2_out);
freepBox(this->conv3_out);
freepBox(this->pooling3_out);
freepBox(this->conv4_out);
freepBox(this->fc5_out);
freepBox(this->score_);
freepBox(this->location_);
freepBox(this->keyPoint_);
freeWeight(this->conv1_wb);
freepRelu(this->prelu_gmma1);
freeWeight(this->conv2_wb);
freepRelu(this->prelu_gmma2);
freeWeight(this->conv3_wb);
freepRelu(this->prelu_gmma3);
freeWeight(this->conv4_wb);
freepRelu(this->prelu_gmma4);
freeWeight(this->fc5_wb);
freepRelu(this->prelu_gmma5);
freeWeight(this->score_wb);
freeWeight(this->location_wb);
freeWeight(this->keyPoint_wb);
}
void Onet::OnetImage2MatrixInit(struct pBox *pbox) {
pbox->channel = 3;
pbox->height = 48;
pbox->width = 48;
pbox->pdata = (mydataFmt *) malloc(pbox->channel * pbox->height * pbox->width * sizeof(mydataFmt));
if (pbox->pdata == NULL)cout << "the image2MatrixInit is failed!!" << endl;
memset(pbox->pdata, 0, pbox->channel * pbox->height * pbox->width * sizeof(mydataFmt));
}
void Onet::run(Mat &image) {
image2Matrix(image, this->rgb);
convolution(this->conv1_wb, this->rgb, this->conv1_out);
prelu(this->conv1_out, this->conv1_wb->pbias, this->prelu_gmma1->pdata);
//Pooling layer
maxPooling(this->conv1_out, this->pooling1_out, 3, 2);
convolution(this->conv2_wb, this->pooling1_out, this->conv2_out);
prelu(this->conv2_out, this->conv2_wb->pbias, this->prelu_gmma2->pdata);
maxPooling(this->conv2_out, this->pooling2_out, 3, 2);
//conv3
convolution(this->conv3_wb, this->pooling2_out, this->conv3_out);
prelu(this->conv3_out, this->conv3_wb->pbias, this->prelu_gmma3->pdata);
maxPooling(this->conv3_out, this->pooling3_out, 2, 2);
//conv4
convolution(this->conv4_wb, this->pooling3_out, this->conv4_out);
// convolution(this->conv4_wb, this->pooling3_out, this->conv4_out, this->conv4_matrix);
prelu(this->conv4_out, this->conv4_wb->pbias, this->prelu_gmma4->pdata);
fullconnect(this->fc5_wb, this->conv4_out, this->fc5_out);
prelu(this->fc5_out, this->fc5_wb->pbias, this->prelu_gmma5->pdata);
//conv6_1 score
fullconnect(this->score_wb, this->fc5_out, this->score_);
addbias(this->score_, this->score_wb->pbias);
softmax(this->score_);
// pBoxShow(this->score_);
//conv6_2 location
fullconnect(this->location_wb, this->fc5_out, this->location_);
addbias(this->location_, this->location_wb->pbias);
// pBoxShow(location_);
//conv6_2 location
fullconnect(this->keyPoint_wb, this->fc5_out, this->keyPoint_);
addbias(this->keyPoint_, this->keyPoint_wb->pbias);
// pBoxShow(keyPoint_);
}
mtcnn::mtcnn(int row, int col) {
nms_threshold[0] = 0.7f;
nms_threshold[1] = 0.7f;
nms_threshold[2] = 0.7f;
//float minl = row>col?row:col;
float minl = float(row > col ? col : row);
int MIN_DET_SIZE = 12;
int minsize = 20;
float m = (float) MIN_DET_SIZE / minsize;
minl *= m;
float factor = 0.709f;
int factor_count = 0;
while (minl > MIN_DET_SIZE) {
if (factor_count > 0)m = m * factor;
scales_.push_back(m);
minl *= factor;
factor_count++;
}
float minside = float(row < col ? row : col);
int count = 0;
for (vector<mydataFmt>::iterator it = scales_.begin(); it != scales_.end(); it++) {
if (*it > 1) {
cout << "the minsize is too small" << endl;
while (1);
}
if (*it < (MIN_DET_SIZE / minside)) {
scales_.resize(count);
break;
}
count++;
}
simpleFace_ = new Pnet[scales_.size()];
}
mtcnn::~mtcnn() {
delete[]simpleFace_;
}
void mtcnn::findFace(Mat &image, vector<Rect> &vecRect, vector<Point> &vecPoint) {
struct orderScore order;
int count = 0;
if (image.empty())
return;
for (size_t i = 0; i < scales_.size(); i++) {
int changedH = (int) ceil(image.rows * scales_.at(i));
int changedW = (int) ceil(image.cols * scales_.at(i));
resize(image, reImage, Size(changedW, changedH), 0, 0, cv::INTER_LINEAR);
simpleFace_[i].run(reImage, scales_.at(i));
nms(simpleFace_[i].boundingBox_, simpleFace_[i].bboxScore_, simpleFace_[i].nms_threshold, "Union");
for (vector<struct Bbox>::iterator it = simpleFace_[i].boundingBox_.begin();
it != simpleFace_[i].boundingBox_.end(); it++) {
if ((*it).exist) {
firstBbox_.push_back(*it);
order.score = (*it).score;
order.oriOrder = count;
firstOrderScore_.push_back(order);
count++;
}
}
simpleFace_[i].bboxScore_.clear();
simpleFace_[i].boundingBox_.clear();
}
//the first stage's nms
printf("count1:%d\n", count);
if (count < 1)return;
nms(firstBbox_, firstOrderScore_, nms_threshold[0], "Union");
refineAndSquareBbox(firstBbox_, image.rows, image.cols);
//second stage
count = 0;
for (vector<struct Bbox>::iterator it = firstBbox_.begin(); it != firstBbox_.end(); it++) {
if ((*it).exist && ((*it).y1 < (*it).y2) && ((*it).x1 < (*it).x2)) {
Rect temp((*it).y1, (*it).x1, (*it).y2 - (*it).y1, (*it).x2 - (*it).x1);
Mat secImage;
resize(image(temp), secImage, Size(24, 24), 0, 0, cv::INTER_LINEAR);
refineNet.run(secImage);
if (*(refineNet.score_->pdata + 1) > refineNet.Rthreshold) {
memcpy(it->regreCoord, refineNet.location_->pdata, 4 * sizeof(mydataFmt));
it->area = float((it->x2 - it->x1) * (it->y2 - it->y1));
it->score = *(refineNet.score_->pdata + 1);
secondBbox_.push_back(*it);
order.score = it->score;
order.oriOrder = count++;
secondBboxScore_.push_back(order);
} else {
(*it).exist = false;
}
}
}
printf("count2:%d\n", count);
if (count < 1)return;
nms(secondBbox_, secondBboxScore_, nms_threshold[1], "Union");
refineAndSquareBbox(secondBbox_, image.rows, image.cols);
//third stage
count = 0;
for (vector<struct Bbox>::iterator it = secondBbox_.begin(); it != secondBbox_.end(); it++) {
//if ((*it).exist) {
if ((*it).exist && ((*it).y1 < (*it).y2) && ((*it).x1 < (*it).x2)) {
Rect temp((*it).y1, (*it).x1, (*it).y2 - (*it).y1, (*it).x2 - (*it).x1);
Mat thirdImage;
resize(image(temp), thirdImage, Size(48, 48), 0, 0, cv::INTER_LINEAR);
outNet.run(thirdImage);
mydataFmt *pp = NULL;
//printf("%f\n", *(outNet.score_->pdata + 1));
if (*(outNet.score_->pdata + 1) > outNet.Othreshold) {
//if(true){
memcpy(it->regreCoord, outNet.location_->pdata, 4 * sizeof(mydataFmt));
it->area = float((it->x2 - it->x1) * (it->y2 - it->y1));
it->score = *(outNet.score_->pdata + 1);
pp = outNet.keyPoint_->pdata;
for (int num = 0; num < 5; num++) {
(it->ppoint)[num] = it->y1 + (it->y2 - it->y1) * (*(pp + num));
(it->ppoint)[num + 5] = it->x1 + (it->x2 - it->x1) * (*(pp + num + 5));
}
thirdBbox_.push_back(*it);
order.score = it->score;
order.oriOrder = count++;
thirdBboxScore_.push_back(order);
} else {
it->exist = false;
}
}
}
printf("count3:%d\n", count);
if (count < 1)return;
refineAndSquareBbox(thirdBbox_, image.rows, image.cols);
nms(thirdBbox_, thirdBboxScore_, nms_threshold[2], "Min");
int num = 0;
int saveflag = 2;//0 预处理 1 预测识别 2 单独运行
for (vector<struct Bbox>::iterator it = thirdBbox_.begin(); it != thirdBbox_.end(); it++) {
if ((*it).exist && ((*it).y1 < (*it).y2) && ((*it).x1 < (*it).x2)) {
Rect temp((*it).y1, (*it).x1, (*it).y2 - (*it).y1, (*it).x2 - (*it).x1);
vecPoint.push_back(Point((*it).y1, (*it).x1));
vecPoint.push_back(Point((*it).y2, (*it).x2));
for (int num = 0; num < 5; num++)
vecPoint.push_back(Point((int) *(it->ppoint + num), (int) *(it->ppoint + num + 5)));
vecRect.push_back(temp);
if (saveflag == 0) {
Rect temp((*it).y1, (*it).x1, (*it).y2 - (*it).y1, (*it).x2 - (*it).x1);
Mat fourthImage;
resize(image(temp), fourthImage, Size(299, 299), 0, 0, cv::INTER_LINEAR);
facenet ggg;
mydataFmt *o = new mydataFmt[Num];
// ggg.run(fourthImage, o, num);
imshow("result", fourthImage);
imwrite("../emb_img/" + to_string(num) + ".jpg", fourthImage);
waitKey(3000);
destroyWindow("result");
fourthImage.release();
ofstream outFile;
outFile.open("../emb_csv/" + to_string(num) + ".csv", ios::out); // 打开模式可省略
for (int l = 0; l < Num; ++l) {
// cout << o[l] << endl;
if (l == Num - 1) {
outFile << o[l];
} else {
outFile << o[l] << ',';
}
}
outFile << endl;
outFile.close();
delete o;
}
// num++;
// }
}
}
firstBbox_.clear();
firstOrderScore_.clear();
secondBbox_.clear();
secondBboxScore_.clear();
thirdBbox_.clear();
thirdBboxScore_.clear();
}